Abstract

ABSTRACT Recent observations of Seyfert galaxies indicate that low-power, misaligned jets can undergo significant interaction with the gas in the galactic disc and may be able to drive large-scale, multiphase outflows. We apply our novel sub-grid model for Blandford–Znajek jets to simulations of the central regions of Seyferts, in which a black hole is embedded in a dense, sub-kpc circumnuclear disc (CND) and surrounded by a dilute circumgalactic medium. We find that the variability of the accretion flow is highly sensitive both to the jet power and to the CND thermodynamics and, ultimately, is determined by the complex interplay between jet-driven outflows and backflows. Even at moderate Eddington ratios, jets from active galactic nuclei (AGN) are able to significantly alter the thermodynamics and kinematics of CNDs and entrain up to $10{{\ \rm per\ cent}}$ of their mass in the outflow. Mass outflow rates and kinetic powers of the warm outflowing component are in agreement with recent observations for black holes with similar bolometric luminosities, with outflow velocities that are able to reach $500 \, {\rm km \, s^{-1}}$. Depending on their power and direction, jets are able to drive a wide variety of large-scale outflows, ranging from light, hot and collimated structures to highly mass-loaded, multiphase, bipolar winds. This diversity of jet-driven outflows highlights the importance of applying physically motivated models of AGN feedback to realistic galaxy formation contexts. Such simulations will play a crucial role in accurately interpreting the wealth of data that next-generation facilities such as JWST, SKA, and Athena will provide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call