Abstract

The physical state of the gas in the central 500 pc of NGC~5128 (the radio galaxy Centaurus A - Cen A), was investigated using the far-infrared fine-structure lines of carbon, oxygen, and nitrogen, as well as the CO(4-3) molecular line. The circumnuclear disk (CND) is traced by emission from dust and the neutral gas ([CI] and CO). A gas outflow with a line-of-sight velocity of 60 km/s is evident in both species. The center of the CND is bright in [OI], [OIII], and [CII]; [OI]63mu emission dominates that of [CII] even though it is absorbed with optical depths of 1.0-1.5. The outflow is well-traced by the [NII] and [NIII] lines and also seen in the [CII] and [OIII] lines that peak in the center. Ionized gas densities are moderate in the CND and low everywhere else. Neutral gas densities range from 4000 per cm3 (outflow, extended thin disk ETD) to 20 000 per cm3 (CND). The CND radiation field is weak compared to the ETD starburst field. The outflow has a much stronger radiation field. The total mass of all the CND gas is 9 x 10^(7) M(o) and the mass of the outflowing gas is only 15%-30% of that. The outflow most likely originates from the shock-dominated CND cavity surrounding the central black hole. With a factor of three uncertainty, the mass outflow rate is about 2 M(o)/yr, a thousand times higher than the accretion rate of the black hole. Without replenishment, the CND will be depleted in 15-120 million years. However, the outflow velocity is well below the escape velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call