Abstract

Blade-tip timing (BTT) is a promising method for the detection, measurement and analysis of blade vibrations in rotating bladed assemblies. However, the intricacies of the method when applied to real rotating structures undergoing synchronous (Engine Ordered) vibrations are not yet fully understood. In this paper, a mathematical model is developed to simulate data from typical BTT tests of rotating assemblies. The simulator is then used in order to provide a qualitative analysis of several phenomena that can be associated with the synchronous vibrations of rotating assemblies, including mistuning, coupling, excitation at multiple Engine Orders and simultaneous synchronous and asynchronous responses. It is concluded that none of these phenomena on its own will render the identification of the frequency and amplitude of blade vibrations impossible. However, there is no single BTT data analysis method that is able to deal with all of these phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.