Abstract

The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM), a gradient-based parameterization-analyzing method (GPAM), a response surface method (RSM) with zooming algorithm and a simple gradient method. By the use of blade parameterization method a transonic compressor rotor can be expressed by a set of polynomials, and then it enables us to transform coordinate-expressed blade data to parameter-expressed and then to reduce the number of parameters. With changing any one of the parameters and by applying grid generator and N.S. solver, we can obtain several groups of samples. Here only ten parameters were considered to search an optimized compressor rotor. As a result of optimization, the adiabatic efficiency was increased by 1.73%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.