Abstract

Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using the response surface method and three-dimensional Navier-Stokes analysis. The three design variables, blade sweep, lean and skew, are introduced to optimize the three-dimensional stacking line of the rotor blade. The objective function of the shape optimization is adiabatic efficiency. Throughout the shape optimization of the rotor, the adiabatic efficiency is increased by reducing the hub corner and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. Among the three design variables, the blade skew is most effective to increase the adiabatic efficiency in the compressor rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.