Abstract

A diamond conditioner or dresser is needed to regenerate the asperity structure of the pad and recover its designed ability in chemical mechanical polishing (CMP) process. In this paper a new design of diamond conditioner is made by shaping a sintered matrix of polycrystalline diamond (PCD) to form teethed blades. These blades are arranged and embedded in epoxy resin to make a designed penetration angle, called the blade diamond disk. The dressing characteristics of pad surface textures are studied by comparison with conventional diamond conditioner. It is found that the height variation of the diamond tip of blade diamond disk is significantly smaller than the conventional diamond disk. The dressing rate of blade diamond disk is lower than that of the conventional diamond disk, and hence the pad life is prolonged. As a result, reduction of the cost CMP is expected. In addition the pad surface roughness Ra of about 3.79μm is less than Ra of about 4.15μm obtained after dressing using a conventional diamond disk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call