Abstract
Humidified gas turbine cycles such as the humidified air turbine (HAT) and the steam-injected gas turbine (STIG) present exciting new prospects for industrial gas turbine technology, potentially offering greatly increased work outputs and cycle efficiencies at moderate costs. The availability of humidified air or steam in such cycles also presents new opportunities in blade and disk cooling architecture. Here, the blade cooling optimisation of a HAT cycle and a STIG cycle is considered, first by optimising the choice of coolant bleeds for a reference cycle, then by a full parametric optimisation of the cycle to consider a range of optimised designs. It was found that the coolant demand reductions which can be achieved in the HAT cycle using humidified or post-aftercooled coolant are compromised by the increase in the required compression work. Furthermore, full parametric optimisation showed that higher water flow-rates were required to prevent boiling within the system. This corresponded to higher work outputs, but lower cycle efficiencies. When optimising the choice of coolant bleeds in the STIG cycle, it was found that bleeding steam for cooling purposes reduced the steam available for power augmentation and thus compromised work output, but that this could largely be overcome by reducing the steam superheat to give useful cycle efficiency gains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.