Abstract
Segmenting the bladder wall from MRI images is of great significance for the early detection and auxiliary diagnosis of bladder tumors. However, automatic bladder wall segmentation is challenging due to weak boundaries and diverse shapes of bladders. Level-set-based methods have been applied to this task by utilizing the shape prior of bladders. However, it is a complex operation to adjust multiple parameters manually, and to select suitable hand-crafted features. In this paper, we propose an automatic method for the task based on deep learning and anatomical constraints. First, the autoencoder is used to model anatomical and semantic information of bladder walls by extracting their low dimensional feature representations from both MRI images and label images. Then as the constraint, such priors are incorporated into the modified residual network so as to generate more plausible segmentation results. Experiments on 1092 MRI images shows that the proposed method can generate more accurate and reliable results comparing with related works, with a dice similarity coefficient (DSC) of 85.48%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.