Abstract
Due to the nonlinearity of the deep-seafloor and complexity of the hydrodynamic force of novel structure platforms, realising an accurate motion mechanism modelling of a deep-sea landing vehicle (DSLV) is difficult. The support vector regression (SVR) model optimised through particle swarm optimisation (PSO) was used to complete the black-box motion modelling and vehicle prediction. In this study, first, the prototype and system composition of the DSLV were proposed, and subsequently, the high-dimensional nonlinear mapping relationship between the motion state and the driving forces was constructed using the SVR of radial basis function. The high-precision model parameter combination was obtained using PSO, and, subsequently, the black-box modelling and prediction of the vehicle were realised. Finally, the effectiveness of the method was verified through multi-body dynamics simulation and scaled test prototype data. The experimental results confirmed that the proposed PSO–SVR model could establish an accurate motion model of the vehicle, and provided a high-precision motion state prediction. Furthermore, with less calculation, the proposed method can reliably apply the model prediction results to the intelligent behaviour control and planning of the vehicle, accelerate the development progress of the prototype, and minimise the economic cost of the research and development process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.