Abstract

Optical technologies and devices rely on the controlled manipulation of light propagation through a medium. This is generally governed by the inherent effective refractive index of the material as well as by its structure and dimensionality. Although a precise control over light propagation with sub‐wavelength size objects is a crucial issue for a plethora of applications, the widely used fabrication methods remain cumbersome and expensive. Here, a sol–gel dip‐coating method combined with nanoimprinting lithography on arbitrary glass and silicon substrates is implemented for the fabrication of TiO2‐based dielectric Mie resonators. The technique allows obtaining sub‐micrometric pillars featuring unprecedented vertical aspect ratios (>1) with relatively high fidelity and precision. Spectroscopic characterization at visible and near‐infrared frequencies demonstrate that the resonant properties of these dielectric pillar arrays allow for a drastic reduction of light transmission (cutting more than 50% on glass) and reduced reflection (reflecting less than 3% on glass and 16% on bulk silicon), accounting for an efficient light trapping. These results provide a guideline for the fabrication of Mie resonators using a fast, versatile, low‐cost, low‐temperature technique for efficient light manipulation at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.