Abstract
Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed. Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay. Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9. This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.