Abstract
Few studies have examined the effect of black tea (Camellia sinensis) theaflavins on obesity-related targets. Pancreatic lipase (PL) plays a central role in fat metabolism and is a validated target for weight loss. We compared the inhibitory efficacy of individual theaflavins and explored the underlying mechanism. Theaflavin-3,3′-digallate (TFdiG), theaflavin-3′-gallate, theaflavin-3-gallate, and theaflavin inhibited PL with IC50 of 1.9, 4.2, 3.0, and >10μmol/L. The presence and location of the galloyl ester moiety were essential for inhibitory potency. TFdiG exhibited mixed inhibition with respect to substrate concentration. In silico modeling showed that theaflavins bind to Asn263 and Asp206, which form a pocket adjacent to the active site, and galloyl-containing theaflavins are then predicted to perturb the protonation of His264. These data provide a putative mechanism to explain the anti-obesity effects of tea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.