Abstract

Aerobic exercise can promote “fast-to-slow transition” in skeletal muscles, i.e. an increase in oxidative fibers, mitochondria, and myoglobin and improvement in glucose and lipid metabolism. Here, we found that mice administered Mitochondria Activation Factor (MAF) combined with exercise training could run longer distances and for a longer time compared with the exercise only group; MAF is a high-molecular-weight polyphenol purified from black tea. Furthermore, MAF intake combined with exercise training increased phosphorylation of AMPK and mRNA level of glucose transporter 4 (GLUT4). Thus, our data demonstrate for the first time that MAF activates exercise training-induced intracellular signaling pathways that involve AMPK, and improves endurance capacity.

Highlights

  • Tea is the most popular beverage in the world

  • mitochondria activation factors (MAF) intake has no effect on endurance capacity in the absence of training

  • At week 7, there were significant differences in both the running time and distance between the T and TM groups (Fig. 1A, B). These data demonstrate that MAF intake with endurance exercise significantly improves exercise training-stimulated running endurance

Read more

Summary

Introduction

Recent studies show that tea components, such as caffeine and polyphenols, have various beneficial effects at the physiological and cellular levels, in particular, anti-oxidation [1], anti-obesity [2], and anti-aging [3] effects. High-molecular-weight polyphenol referred to as mitochondria activation factors (MAF), which can activate mitochondrial respiration, at least in a ciliated protozoan Tetrahymena pyriformis [4]. MAF might be useful to induce fast-to-slow transition, to increase aerobic metabolism capacity in skeletal muscle and to improve endurance capacity. Skeletal muscles are composed of slow fibers (type I), which can continually contract for hours, and fast fibers (type II), which have higher contractile velocity but lower resistance to fatigue. IIA and IIB fibers have high and low oxidative metabolism capacity, respectively, whereas IID/X fibers are an intermediate type [5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.