Abstract

Here we present a study of the nickel-assisted etching applied to form uniform black silicon layers on crystalline silicon substrates. We related the parameters used for technological process control (etchant, nickel thickness) to parameters of the obtained surface and explain the correlation using the etching model responsible for etching of the silicon covered by a thin nickel film. The increase in the thickness of the metal catalyst did not suppress the etching completely but allowed one to tune the roughness of the silicon surface. The rate of the electrochemical etching was additionally changed by adaptation of the proportion of components in the complex etchant. Depending on the intentionally selected conditions, the duration of the optimized process was from 3 to 10 min. The lowest optical reflection commonly accepted as the black silicon surface was obtained for the mixture with a low amount of the active etchant component. It was demonstrated that the method is acceptable to improve the characteristics of a photovoltaic cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.