Abstract

Black phosphorous quantum dots (BPQDs) possess ambipolar charge transport, high mobility, and a tunable direct bandgap. Here, liquid-exfoliated BPQDs are used as interlayers to modify both the electron transport layer and hole transport layer in organic solar cells (OSCs). The incorporation of BPQDs is beneficial to the formation of a cascade band structure and electron/hole transfer and extraction. The power conversion efficiency of the BPQDs-incorporated OSC based on PTB7-Th:FOIC blend is enhanced from 11.8% to 13.1%. In addition, power conversion efficiency enhancement is also achieved for other nonfullerene and fullerene-based devices, demonstrating the universality of this interlayer methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.