Abstract
Einstein–Maxwell–Gauss–Bonnet-axion theory in 4-dimensional spacetime is investigated in this paper through a “Kaluza–Klein-like” process. Dual to systems at finite temperature with background magnetic field on three dimensions, the four-dimensional dyonic black hole solution coupled with higher derivative terms is obtained. After the tensor-type perturbation is added, the shear viscosity to entropy density ratio is calculated at high temperature and low temperature separately. The behaviour of shear viscosity to entropy density ratio of uncharged black holes is found to be similar with that in 5-dimensional spacetime, violating the Kovtun–Starinets–Son bound as well when temperature becomes lower. In addition, the main feature of this ratio remains almost unchanged in 4 dimensions, which is characterised by (T/varDelta )^2 at low temperature T, with varDelta proportional to the coefficient beta from scalar fields. The difficulty in causal analysis is also discussed, which is mainly caused by the vanishing momentum term in equations of motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.