Abstract
As the interaction between the black holes and highly energetic infalling charged matter receives quantum corrections, the basic laws of black hole mechanics have to be carefully rederived. Using the covariant phase space formalism, we generalize the first law of black hole mechanics, both "equilibrium state" and "physical process" versions, in the presence of nonlinear electrodynamics fields, defined by Lagrangians depending on both quadratic electromagnetic invariants, $F_{ab}F^{ab}$ and $F_{ab}\,{\star F}^{ab}$. Derivation of this law demands a specific treatment of the Lagrangian parameters, similar to embedding of the cosmological constant into thermodynamic context. Furthermore, we discuss the validity of energy conditions, several complementing proofs of the zeroth law of black hole electrodynamics and some aspects of the recently generalized Smarr formula, its (non-)linearity and relation to the first law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.