Abstract

We have systematically studied a large sample of the neutron star low mass X-ray binaries (LMXBs) monitored by the Rossi X-ray Timing Explorer (50 sources; 10000+ observations). We find that the hysteresis patterns between Compton dominated and thermal dominated states, typically observed in black hole LMXBs, are also common in neutron star systems. These patterns, which also sample intermediate states, are found when looking at the evolution of both X-ray colour and fast variability of ten systems accreting below ~ 30 % of the Eddington Luminosity. We show that hysteresis does not require large changes in luminosity and it is the natural form that state transitions take at these luminosities. At higher accretion rates neutron stars do not show hysteresis, and they remain in a thermal dominated, low variability state, characterized by flaring behaviour and fast colour changes. Only at luminosities close to the Eddington Luminosity, are high variability levels seen again, in correspondence to an increase in the fractional contribution of the Comptonization component. We compare this behaviour with that observed in LMXBs harbouring black holes, showing that the spectral, timing and multi-wavelength properties of a given source can be determined by its location in the fast variability-luminosity diagram, which, therefore, provides a common framework for neutron star and black hole accretion states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.