Abstract

We use Rossi X-ray Timing Explorer observations to conduct a population study of the timing properties of accretion-powered neutron star Low Mass X-ray Binaries (LMXBs), following a model-independent approach that was originally applied to black hole systems. The ratios of integrated power in four equally spaced Fourier frequency bands allow power spectral shapes to be parameterised with two `power colour' values, providing a simple way of tracking the evolution in timing properties across observations. We show that neutron star LMXBs follow a remarkably similar power spectral evolution to black hole LMXBs, confirming that the broadband noise variability seen in both types of system has a common origin in the accretion flow. Both neutron stars and black holes follow a similar clear track in the power colour-colour diagram as they transition from the hard through soft states. Quantifying the position on this oval track using a single parameter, the power-spectral `hue', we find that the transition in X-ray spectral shape occurs at the same hue for both neutron star and black hole systems. The power colours of Z sources map on to those of soft state black holes, while those of atoll sources correspond to all spectral states. There is no clear dependence of power colour on neutron star spin, or on whether the neutron star is clearly magnetised (determined by ms X-ray pulsations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.