Abstract
ABSTRACT We perform high-resolution hydrodynamical simulations using the framework of MACER to investigate supermassive black hole (SMBH) feeding and feedback in a massive compact galaxy, which has a small effective radius but a large stellar mass, with a simulation duration of 10 Gyr. We compare the results with a reference galaxy with a similar stellar mass but a less concentrated stellar density distribution, as typically found in local elliptical galaxies. We find that about 10 per cent of the time, the compact galaxy develops multiphase gas within a few kpc, but the accretion flow through the inner boundary below the Bondi radius is always a single phase. The inflow rate in the compact galaxy is several times larger than in the reference galaxy, mainly due to the higher gas density caused by the more compact stellar distribution. Such a higher inflow rate results in stronger SMBH feeding and feedback and a larger fountain-like inflow-outflow structure. Compared to the reference galaxy, the star formation rate in the compact galaxy is roughly two orders of magnitude higher but is still low enough to be considered quiescent. Over the whole evolution period, the black hole mass grows by ∼50 per cent in the compact galaxy, much larger than the value of ∼ 3 per cent in the reference galaxy.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have