Abstract
Abstract. Both the size and mixing state of black carbon (BC)-containing aerosols are crucial in estimating the environmental, health and climate impacts of BC. Traffic emissions are a major global source of BC; however, parameterization of BC mass size distributions and mixing states associated with traffic remains lacking due to its dependence on vehicle types and driving conditions. To investigate BC mass size distributions and mixing states associated with traffic emissions, a field campaign was conducted in the Guangzhou urban area during winter, which used a system coupling a differential mobility analyzer (DMA) and a single-particle soot photometer (SP2) to measure BC mass size distributions in the range of 100 to 700 nm. The resolved primary organic aerosols were hydrocarbon-like organic aerosols (HOA) and cooking-like organic aerosols (COA), as well as refractory BC (rBC), which was detected by the DMA–SP2 and correlated highly with HOA (R2=0.88), confirming that traffic emissions are the dominant source of atmospheric BC during the observations. The BC mass size distribution was found to be best fitted by a lognormal distribution, with a geometric mean (Dg,BC) of 258±16 nm, varying between 200 and 300 nm. During daytime, active formation of secondary nitrate and organic aerosols was observed, but it had little effect on the variations of BC mass size distributions. Further analyses revealed that Dg,BC was moderately correlated with rBC / HOA (R2=0.41) in a linear form of Dg,BC=34×rBC/HOA+177, demonstrating that the BC content of traffic emissions significantly impacts the BC mass size distributions. In addition, the size-dependent fractions of BC-containing aerosols in all types of aerosols (fBCc) and the fraction of identified externally mixed (bare/thinly coated) BC particles in all BC-containing aerosols (fext) were also characterized. It was found that the daytime secondary aerosol formation reduced both fBCc and fext, with the decrease in fext being more pronounced for larger particles, possibly due to the higher relative coating thickness. Variations in fext during nighttime were mainly controlled by the emission conditions. For example, fext for 600 nm particles decreased from 0.82 to 0.46 as rBC / HOA increased from 1 to 3.5, while the mass ratios of secondary aerosols to rBC varied little, demonstrating that the BC content also significantly affects the mixing states of freshly emitted BC from traffic emissions. This study suggests that BC content can be used as the key factor to parameterize both the BC mass size distribution and mixing states from traffic emissions, which warrants future comprehensive investigation. In addition, other sources such as biomass burning and coal combustion also contribute substantially to BC emissions, and it was important to investigate whether BC content of other major BC sources than traffic is also important in determining BC mass size distributions and mixing states. Overall, results of this study have significant implications for accurate representation of BC from different sources when modeling the impacts of BC.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have