Abstract
In the first part of this diploma thesis, the current version of the KIT Flavor Separator, a neural network which is able to distinguish between tagged b-quark jets and tagged c/light-quark jets, is presented. In comparison with previous versions four new input variables are utilized and new Monte Carlo samples with a larger number of simulated events are used for the training of the neural network. It is illustrated that the output of the neural network is continuously distributed between 1 and -1, whereas b-quark jets accumulate at 1, however, c-quark jets and light-quark jets have outputs next to -1. To ensure that the network output describes observed events correctly, the shapes of all input variables are compared in simulation and data. Thus the mismodelling of any input variable is excluded. Moreover, the b jet and light jet output distributions are compared with the output of samples of observed events, which are enhanced in the particular flavor. In contrast to previous versions, no b-jet output correction function has to be calculated, because the agreement between simulation and collision data is excellent for b-quark jets. For the light-jet output, correction functions are developed. Different applications of the KIT Flavor Separator are mentioned. For example it provides a precious input to all three CDF single top quark analyses. Furthermore, it is shown that the KIT Flavor Separator is a universal tool, which can be used in every high-p{sub T} analysis that requires the identification of b-quark jets with high efficiency. As it is pointed out, a further application is the estimation of the flavor composition of a given sample of observed events. In addition a neural network, which is able to separate c-quark jets from light-quark jets, is trained. It is shown, that all three flavors can be separated in the c-net-Flavor Separator plane. As a result, the uncertainties on the estimation of the flavor composition in events with one tagged jet are cut into half. In the second part of this diploma thesis, a method for the combination of three multivariate single-top analyses using an integrated luminosity of 2.2 fb{sup -1} is presented. For this purpose the discriminants of the Likelihood Function analysis, the Matrix Element method and the Neural Network analysis are used as input variables to a neural network. Overall four different networks are trained, one for events with two or three jets and one or two SecVtx tags, respectively. Using a binned likelihood function, the outputs of these networks are fitted to the output distribution of observed events. A single top-quark production cross section of {sigma}{sub single-top} = 2.2{sub -0.7}{sup +0.8} pb is measured. Ensemble tests are performed for the calculation of the sensitivity and observed significance, which are found to be 4.8{sigma} and 3.9{sigma}, respectively. Hence the improvement of this combination is roughly 8% in comparison with sensitivities found by the individual analyses. Due to the proportionality of {sigma}{sub single-top} and |V{sub tb}|{sup 2} and under the assumption V{sub tb} >> V{sub ts}, V{sub td}, a value for |V{sub tb}| is quoted: |V{sub tb}| = 0.88{sub -0.12}{sup +0.14}(exp.) {+-} 0.07(theo.). It can be seen, that the given uncertainties are too large for a verification or falsification of the unitarity assumption of the CKM-matrix. Parallel to this combination a further combination method (NEAT-combination) has been developed. This combination uses a neural network trained with a neuroevolution technique, which optimizes the neural network architecture and weights through the use of genetic algorithms. In this analysis an improvement of roughly 12% could be reached. In figure 7.1 the current situation for the measurement of the single top-quark production cross section is summarized. After collecting more data, CDF will be able to observe single top-quark production with a significance larger than 5.0{sigma}. Nevertheless, the cross section measurement will still have large uncertainties on the level of 20%. Precise measurements on the few percent level will only be possible at the LHC. Recent studies for the CMS detector showed, that the t-channel cross section can be measured with an accuracy of 7% in 1 fb{sup -1} of LHC data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have