Abstract

AbstractThis study describes biweekly (defined as periods between 10 and 15 days) ocean variability in relation to equatorial wave theory using a comprehensive set of moored ocean current velocities as well as satellite‐retrieved oceanic and atmospheric parameters in the Indian Ocean. Moored biweekly current velocities exhibit the meridional structure of mixed Rossby‐gravity waves: Symmetric for meridional velocity and antisymmetric for zonal velocity around the equator with a decay scale of 228–309 km. The biweekly meridional velocity along the equator has average zonal and vertical wavelengths of 3,430 ± 550 km and 0.76 ± 0.15 km, respectively, with phase propagating westward at speeds of 2.8–3.1 m s−1 and upward at 54–56 m day−1. Conversely, wave energy is inferred to propagate eastward and downward. The range of best fit constants (1.4–2.0 m s−1) that result from the linear separation of horizontal and vertical wave structures suggests the second baroclinic wave mode is dominant over other low baroclinic modes in accounting for the velocity variability. The biweekly waves are forced by surface winds; satellite‐derived wind stress, sea level, and surface current anomalies, regressed against the first principal component of the biweekly moored velocities, illustrate the basin‐scale structure and temporal evolution of the waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.