Abstract
This paper deals with the approximation properties of the [Formula: see text]-bivariate Bernstein–Chlodowsky operators of Durrmeyer type. We investigate the approximation degree of the [Formula: see text]-bivariate operators for continuous functions in Lipschitz space and also with the help of partial modulus of continuity. Further, the Generalized Boolean Sum (GBS) operator of these bivariate [Formula: see text]–Bernstein–Chlodowsky–Durrmeyer operators is introduced and the rate of convergence in the Bögel space of continuous functions by means of the Lipschitz class and the mixed modulus of smoothness is examined. Furthermore, the convergence and its comparisons are shown by illustrative graphics for the [Formula: see text]-bivariate operators and the associated GBS operators to certain functions using Maple algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have