Abstract

Today’s technology demands compact, portable, fast, and energy-efficient devices. One approach to making energy-efficient devices is an in-memory computation that addresses the memory bottleneck issues of the present computing system by utilizing a spintronic device viz. magnetic tunnel junction (MTJ). Further, area and energy can be reduced through approximate computation. We present a circuit design based on the logic-in-memory computing paradigm on voltage-controlled magnetic anisotropy magnetoresistive random access memory (VCMA-MRAM). During the computation, multiple bit cells within the memory array are selected that are in parallel by activating multiple word lines. The designed circuit performs all logic operations-Read/NOT, AND/NAND, OR/NOR, and arithmetic SUM operation (1-bit approximate adder with 75% accuracy for SUM and accurate carry out) by slight modification using control signals. All the simulations have been performed at a 45 nm CMOS technology node with VCMA-MTJ compact model by using the HSPICE simulator. Simulation results show that the proposed circuit’s approximate adder consumes about 300% less energy and 2.3 times faster than its counterpart exact adder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.