Abstract
Deeply embedded systems powered by microcontrollers are becoming popular with the emergence of Internet of Things (IoT) technology. However, these devices primarily run C/C++ code and are susceptible to memory bugs, which can potentially lead to both control data attacks and non-control data attacks. Existing defense mechanisms (such as control flow integrity (CFI), data flow integrity (DFI) and write integrity testing (WIT), etc.) consume a massive amount of resources, making them less practical in real products. To make it lightweight, we design a bitmap-based allowlist mechanism to unify the storage of the runtime data for protecting both control data and non-control data. The memory requirements are constant and small, regardless of the number of deployed defense mechanisms. We store the allowlist in the TrustZone to ensure its integrity and confidentiality. Meanwhile, we perform an offline analysis to detect potential collisions and make corresponding adjustments when if happens. We have implemented our idea on an ARM Cortex-M based development board. Our evaluation results show a substantial reduction in memory consumption when deploying the proposed CFI and DFI mechanisms, without compromising runtime performance. Specifically, our prototype enforces CFI and DFI at a cost of just 2.09% performance overhead and 32.56% memory overhead on average.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have