Abstract
Mortality prediction is crucial to evaluate the severity of illness and assist in improving the prognosis of patients. In clinical settings, one way is to analyze the multivariate time series (MTSs) of patients based on their medical data, such as heart rates and invasive mean arterial blood pressure. However, this suffers from sparse, irregularly sampled, and incomplete data issues. These issues can compromise the performance of follow-up MTS-based analytic applications. Plenty of existing methods try to deal with such irregular MTSs with missing values by capturing the temporal dependencies within a time series, yet in-depth research on modeling inter-MTS couplings remains rare and lacks model interpretability. To this end, we propose a bidirectional time and multi-feature attention coupled network (BiT-MAC) to capture the temporal dependencies (i.e., intra-time series coupling) and the hidden relationships among variables (i.e., inter-time series coupling) with a bidirectional recurrent neural network and multi-head attention, respectively. The resulting intra- and inter-time series coupling representations are then fused to estimate the missing values for a more robust MTS-based prediction. We evaluate BiT-MAC by applying it to the missing-data corrupted mortality prediction on two real-world clinical datasets, i.e., PhysioNet’2012 and COVID-19. Extensive experiments demonstrate the superiority of BiT-MAC over cutting-edge models, verifying the great value of the deep and hidden relations captured by MTSs. The interpretability of features is further demonstrated through a case study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.