Abstract

Terrestrial ecosystems rich in natural organic matter (NOM) can act as a sink for As. Recently, the complexation of trivalent As by sulfhydryl groups of NOM was proposed as the main mechanism for As-NOM interactions in anoxic S- and NOM-rich environments. Here we tested the molecular-scale interaction of bisulfide (S(-II)) with NOM and its consequences for arsenite (As(III)) binding. We reacted 0.2 mol C/L peat and humic acid (HA) with up to 5.8 mM S(-II) at pH 7 and 5, respectively, and subsequently equilibrated the reaction products with 55 μM As(III) under anoxic conditions. The speciation of S and the local coordination environment of As in the solid phase were studied by X-ray absorption spectroscopy. Our results document a rapid reaction of S(-II) with peat and HA and the concomitant formation of reduced organic S species. These species were highly reactive toward As(III). Shell fits of As K-edge extended X-ray absorption fine structure spectra revealed that the coordination environment of trivalent As was progressively occupied by S atoms. Fitted As-S distances of 2.24-2.34 Å were consistent with sulfhydryl-bound As(III). Besides As(III) complexation by organic monosulfides, our data suggests the formation of nanocrystalline As sulfide phases in HA samples and an As sorption process for both organic sorbents in which As(III) retained its first-shell oxygens. In conclusion, this study documents that S(-II) reaction with NOM can greatly enhance the ability of NOM to bind As in anoxic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.