Abstract
The delay-Doppler map (DDM) is the signal power distribution of the Coarse/Acquisition code (C/A code) of the received Global Navigation Satellite System (GNSS) signal in different code phase delay and Doppler frequency. When the received signal is reflected from ocean surface, the DDM can be used to retrieve the ocean surface wind speed, which is the GNSS-reflectometry (GNSS-R) technique. Due to the signal power distribution in DDM is the correlation results of received and artificial C/A code from receiver in different code phase delay and Doppler frequency, the Woodward ambiguity function (WAF) occurs in the DDM. In the case of DDM, the WAF is the correlation results of two square waves in different code phase delay and Doppler frequency, and is approximated a triangular function and a sinc function in code phase delay and Doppler frequency axes, respectively. It means the correlation results not only show the code phase delay and Doppler frequency of the received signal but also influence the surrounding code phase delay and Doppler frequency values and cause the structure of DDM more complex. Using more bins in DDM in the wind speed retrieval process can reduce the influence of WAF but cause the spatial resolution to worsen. In order to use as less bins as possible in the retrieval process and not reduce the retrieval efficiency too much, a simple method to estimate bistatic radar cross section (BRCS) from DDM is developed in this study. Furthermore, a retrieval process is also developed for ocean surface wind speed retrieving by using less bins in the DDM from Cyclone Global Navigation Satellite System (CYGNSS) mission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.