Abstract
Low reliability and high maintenance cost of using power and data cables are two main reasons motivating the application of the self-powered wireless sensors for structural health monitoring (SHM) systems in bridge structures. On the other hand, energy harvesting systems have been introduced as a solution for the current limitations of the batterypowered wireless sensors associated with the finite life-span of batteries and their replacements. The objective in this paper is to propose a new optimized nonlinear energy harvesting concept, namely Bistable Energy Harvesting (BEH) system, for smart SHM of bridge structures. In this study, a dynamic analysis of the energy harvesting system for cablesupported bridges subject to wind-induced vibration is carried out and the feasibility of the energy harvesting device is investigated. This paper presents efficient linear and nonlinear energy harvesting systems for wireless monitoring of long-span cable-supported bridges. It is shown that level of the extracted energy from such energy harvesting system is quite sufficient to supply energy for self-powered sensors of a bridge health monitoring system. This study is to promote the recent line of research on self-powered sensor networks for smart bridge monitoring being performed at the Florida International University.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.