Abstract

Ising machines have been attracting attention due to their ability to use mixed discrete/continuous mechanisms to solve difficult combinatorial optimization problems. We present BLIM, a novel Ising machine scheme that uses latches (bistable elements) with controllable gains as Ising spins. We show that networks of coupled latches have a Lyapunov or “energy” function that matches the Ising Hamiltonian in discrete operation, enabling them to function as Ising machines. This result is established in a general coupled-element Ising machine framework that is not limited to BLIM. Operating the latches periodically in analog/continuous mode, during which bistability is removed, helps the system traverse to better minima. CMOS realizations of BLIM have desirable practical features; implementation in other physical domains is an intriguing possibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.