Abstract

The present work is devoted to the numerical analysis of the dynamics of a 2D lattice of coupled van der Pol oscillators in the regime of relaxation oscillations. It is shown that the influence of coupling leads to the shift of effective values of the control parameters of individual oscillators. The strong coupling can even cause the transition to bistable dynamics which is never observed in a single van der Pol oscillator. The numerically constructed phase-parametric diagram that takes into account the shifts of parameters shows that the bistability arises through the pitchfork bifurcation when varying the coupling strength. The lattice dynamics is analyzed when the control and coupling parameters are varied within a wide range, and the regime diagrams are constructed in the planes of system parameters. A new type of spatiotemporal pattern, a so-called ”labyrinth-like structure”, is found and described in detail. We also reveal for the first time and study a spiral wave chimera with a new kind of the incoherence core in the form of ”labyrinth-like structure”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.