Abstract

A first-principles study of the BO2 complex in B-doped Czochralski Si reveals a defect-bistability-mediated carrier recombination mechanism, which contrasts with the standard fixed-level Shockley-Read-Hall model of recombination. An O2 dimer distant from B causes only weak carrier recombination, which nevertheless drives O2 diffusion under light to form the BO2 complex. Although BO2 and O2 produce nearly identical defect levels in the band gap, the recombination at BO2 is substantially faster than at O2 because the charge state of the latter inhibits the hole capture step of recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.