Abstract

Oxidative stress mechanisms are involved in hepatotoxicity. The liver is reported to be affected by bisphenol A (BPA) in animals studies and has been also reported to possess hepatic toxicity. This study aimed to examine association between liver health status and the effects of BPA on the antioxidant defense systems and liver biomarkers. BPA (0, 2, 10, and 50 mg/kg) body weight was mixed in corn oil and intraperitoneally administered every forty-eight hours for 30 days in dose-dependent manner. There was no significant difference between the body weight and weight of rat liver in BPA-treated groups and control groups. The study results show that the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) increased after exposure to BPA. However, the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were significantly (P<0.001,P<0.05, andP<0.001, resp.) decreased at 50 mg/kg dosage. Liver markers activities such as lactate dehydrogenase (LDH), glutamic-oxalacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) were significantly increased, whileγ-glutamyl transferase (γ-GT) activity was decreased. BPA exposure increased activity of liver biomarkers indicating liver hyperactivity. Analysis of the liver section provided essential evidence of liver apoptosis. Moreover, BPA may lead to induced toxic response of liver oxidative system.

Highlights

  • Bisphenol A [2, 2-bis (4-hydroxyphenyl) propane] (BPA) is one of the highest volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous [1]

  • The treatment of BPA promoted an increase in the body weight gain when compared to the initial weight of rats

  • The present research aimed to evaluate whether exposure to BPA induces oxidative stress in the liver of male rats and its contribution to liver diseases

Read more

Summary

Introduction

Bisphenol A [2, 2-bis (4-hydroxyphenyl) propane] (BPA) is one of the highest volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous [1]. BPA is suspected to be an endocrine-disrupting chemical, an important component of polycarbonate and epoxy resins. It is mainly found in the composition of a wide variety of polycarbonate plastic, flame retardants, dental sealant resins, and liners for food packaging. Studies have shown that BPA can cause injury in the liver, kidney, brain, epididymal sperm in rodents, and other organs by forming reactive oxygen species (ROS) [2, 3]. ROS have been shown to play an important role in the defense mechanisms against pathological conditions but excessive generation of free oxygen radicals may damage tissues and damage proteins, leading to the structural alteration and functional inactivation of many enzymes and receptor proteins involved in cell signaling [4]. Due to increased concerns over the safety of BPA, its presence has been prohibited in plastic bottles for infants by Health Canada (2009), the European Union (2011), and the US Food and Drug Administration (FDA) (2012) and will be totally abolished in France by 2015 in food containers [5]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call