Abstract

BackgroundResistance to chemotherapy is a major problem facing breast cancer patients, and identifying potential contributors to chemoresistance is a critical area of research. Bisphenol A (BPA) has long been suspected to promote carcinogenesis, but the high doses of BPA used in many studies generated conflicting results. In addition, the mechanism by which BPA exerts its biological actions is unclear. Although estrogen has been shown to antagonize anticancer drugs, the role of BPA in chemoresistance has not been examined.ObjectiveThe objective of our study was to determine whether BPA at low nanomolar concentrations opposes the action of doxorubicin, cisplatin, and vinblastine in the estrogen receptor-α (ERα)-positive T47D and the ERα-negative MDA-MB-468 breast cancer cells.MethodsWe determined the responsiveness of cells to anticancer drugs and BPA using the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) cytotoxicity assay. Specific ERα and ERβ inhibitors and real-time polymerase chain reaction were used to identify potential receptor(s) that mediate the actions of BPA. Expression of antiapoptotic proteins was assessed by Western blotting.ResultsBPA antagonizes the cytotoxicity of multiple chemotherapeutic agents in both ERα-positive and -negative breast cancer cells independent of the classical ERs. Both cell types express alternative ERs, including G-protein–coupled receptor 30 (GPR30) and members of the estrogen-related receptor family. Increased expression of antiapoptotic proteins is a potential mechanism by which BPA exerts its anticytotoxic effects.ConclusionsBPA at environmentally relevant doses reduces the efficacy of chemotherapeutic agents. These data provide considerable support to the accumulating evidence that BPA is hazardous to human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call