Abstract

Bisphenol A (BPA) is an industrial synthetic chemical used in the production of polycarbonate plastics and epoxy resins. Human exposition to BPA is primarily through eating food, and drinking liquids, because BPA can leach from polycarbonate plastic containers, beverage cans and epoxy resins. BPA induces proliferation and migration in human breast cancer cells. The G protein-coupled estrogen receptor (GPER) is a G protein-coupled receptor coupled with Gs proteins that is activated by estrogen and estrogenic compounds and it is the receptor for BPA. However, the signal transduction pathways that mediate migration via BPA/GPER in triple negative breast cancer (TNBC) cells has not been studied in detail. Here, we demonstrate that BPA induces an increase of GPER expression and activation of FAK, Src and ERK2, and an increase of focal adhesion assembly via GPER in TNBC MDA-MB-231 cells. Moreover, BPA induces FAK and ERK2 activation, focal adhesion assembly and migration via epidermal growth factor receptor (EGFR) transactivation. Collectively our data showed that BPA via GPER and/or EGFR transactivation induces activation of signal transduction pathways that mediate migration in TNBC MDA-MB-231 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.