Abstract

A composite film that features bismuth-antimony alloy nanoparticles uniformly embedded in a 3D hierarchical porous carbon skeleton is synthesized by the polyacrylonitrile-spreading method. The dissolved polystyrene is used as a soft template. The average diameter of the bismuth-antimony alloy nanoparticles is ~34.5 nm. The content of the Bi-Sb alloy has an impact on the electrochemical performance of the composite film. When the content of the bismuth-antimony alloy is 45.27%, the reversible capacity and cycling stability of the composite film are the best. Importantly, the composite film outperforms the bismuth-antimony alloy nanoparticles embedded in dense carbon film and the cube carbon nanobox in terms of specific capacity, cycling stability, and rate capability. The composite film can provide a discharge capacity of 322 mAh g-1 after 500 cycles at 0.5 A g-1, 292 mAh g-1 after 500 cycles at 1 A g-1, and 185 mAh g-1 after 2000 cycles at 10 A g-1. The carbon film prepared by the spreading method presents a unique integrated composite structure that significantly improves the structural stability and electronic conductivity of Bi-Sb alloy nanoparticles. The 3D hierarchical porous carbon skeleton structure further enhances electrolyte accessibility, promotes Na+ transport, increases reaction kinetics, and buffers internal stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call