Abstract

We have used a series of bisindolylmaleimide selective protein-kinase C (PKC) inhibitors to investigate the role of this enzyme in the regulation of cell proliferation in mouse hair follicle organ cultures. Mouse whisker follicles were isolated by microdissection, and rates of DNA synthesis during culture were determined from 3H-thymidine incorporation. The bisindolylmaleimides Ro 31-7549, Ro 31-8161, Ro 31-8425 and Ro 31-8830 inhibit isolated brain PKC with IC50 values of 8-80 nM, are > 60-fold less potent against protein kinase A, and inhibit PKC-mediated protein phosphorylation in platelets with IC50 values in the range 0.25-4.4 microM. These PKC inhibitors were found to increase levels of mouse hair follicle DNA synthesis, with EC50 values in the range 1-4 microM and maximal levels in the range 151-197% of control. Ro 31-7549 had an IC50 value 50-fold lower than that of minoxidil, while the maximal level of DNA synthesis for the PKC inhibitor was 86% higher. Incubation of mouse hair follicles with Ro 31-7549 resulted in a delay of approximately 24 h in the onset of decline in follicular DNA synthesis rates. Ro 31-6045 and Ro 31-7208, bisindolylmaleimides without activity in the platelet PKC assay, did not affect mouse hair follicle DNA synthesis rates. Taken together, these findings show that PKC mediates, at least in part, the rapid loss of proliferative activity that occurs in mouse whisker follicles in culture, and provide further evidence that PKC plays a role as a negative proliferative signal in hair follicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.