Abstract
High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined Gd⋅⋅⋅Gd distances in the range of 1.2-3.4 nm allowed us to elucidate the Gd⋅⋅⋅Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd⋅⋅⋅Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for 1 H, 13 C, and 15 N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have