Abstract

The compound bis[1,1'-N,N'-(2-picolyl)aminomethyl]ferrocene, L(1), was synthesized. The protonation constants of this ligand and the stability constants of its complexes with Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were determined in aqueous solution by potentiometric methods at 25 degrees C and at ionic strength 0.10 mol dm(-3) in KNO(3). The compound L(1) forms only 1:1 (M:L) complexes with Pb(2+) and Cd(2+) while with Ni(2+) and Cu(2+) species of 2 [ratio] 1 ratio were also found. The complexing behaviour of L(1) is regulated by the constraint imposed by the ferrocene in its backbone, leading to lower values of stability constants for complexes of the divalent first row transition metals when compared with related ligands. However, the differences in stability are smaller for the larger metal ions. The structure of the copper complex with L(1) was determined by single-crystal X-ray diffraction and shows that a species of 2:2 ratio is formed. The two copper centres display distorted octahedral geometries and are linked through the two L(1) bridges at a long distance of 8.781(10) Angstrom. The electrochemical behaviour of L(1) was studied in the presence of Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+), showing that upon complexation the ferrocene-ferrocenium half-wave potential shifts anodically in relation to that of the free ligand. The maximum electrochemical shift ([capital Delta]E(1/2)) of 268 mV was found in the presence of Pb(2+), followed by Cu(2+)(218 mV), Ni(2+)(152 mV), Zn(2+)(111 mV) and Cd(2+)(110 mV). Moreover, L(1) is able to electrochemically and selectively sense Cu(2+) in the presence of a large excess of the other transition metal cations studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.