Abstract

AbstractThe influence of the processing variables on the birefringence and polymer/gas interface distribution is analyzed for polystyrene moldings obtained by gas‐assisted injection molding (GAIM) under various processing conditions. The processing variables studied were: melt and mold temperatures, shot size, gas pressure, injection speed, and gas‐delay time. Measurements and viscoelastic simulations of the radial distribution of birefringence components, Δn and nrr − nθθ, the variation of the average birefringence, 〈nzz − nθθ〉, along the molding and polymer/gas interface along the length of spiral‐shaped tubular moldings are presented. The polymer/gas interface distribution and flow stresses were simulated using a numerical scheme based on a hybrid finite element/finite difference/control volume method. The birefringence was calculated from the flow‐induced stresses using the stress‐optical rule. Simulations qualitatively agreed with measurements and correctly described theeffect of the processing variables on the birefringence andthe polymer/gas interface distribution in GAIM moldings. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call