Abstract
Gas assisted injection moulding has proved to be a breakthrough in moulding technology for thermoplastic materials. However, there are still unsolved problems that limit the overall success of this technique. The aim of this work was to study the phenomenon of gloss variations occurring across the surfaces of gas assisted injection moulded parts. Experiments were carried out on an 80 t injection moulding machine equipped with a high pressure, nitrogen gas injection unit. The materials used were pigmented acrylonitrile/butadiene/ styrene and polypropylene. A plate cavity with a gas channel across its centre was used to mould the parts. Various processing parameters were varied: melt temperature; mould temperature; melt filling speed; short shot size; gas pressure; and gas injection delay time. After moulding, a glossmeter was used to determine the effects of these processing parameters on the surface gloss profiles of the parts. A roughness meter and scanning electronic microscope were also employed to characterise the surface quality of moulded parts. In addition, a numerical analysis of the filling process was carried out to help better understand the mechanisms responsible for the phenomenon of surface gloss variations. It was found that the surface gloss difference occurs mainly in the transition area between channel and plate in the moulded parts, which might be the result of the shear stress gradient in the polymer melt during the filling process. Surface roughness of moulded parts might also be another factor resulting in the gloss difference problem. PRC/1720
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.