Abstract

Abstract Human activities are driving rapid defaunation of Earth's ecosystems through increasing rates of extinction. However, the ecological consequences of species loss remain unclear, in part due to the limited availability of high‐resolution functional trait data. To address this, we assess how predicted extinctions will reshape avian functional diversity quantified using a multidimensional trait space, or morphospace, reflecting variation in eight key morphological traits closely linked to ecological function across 9943 (>99%) extant bird species. We show that large regions of this morphospace are represented by very few species and, thus, vulnerable to species loss. We also find evidence that species at highest risk of extinction are both larger and functionally unique in terms of ecological trait dimensions unrelated to size, such as beak shape and wing shape. Although raw patterns suggest a positive relationship between extinction risk and functional uniqueness, this is removed when accounting for phylogeny and body mass, indicating a dominant role for clade‐specific factors, including the combination of larger average body size and higher extinction risk in the non‐passerine clade. Regardless of how a threat is related to uniqueness, we show using simulations that the loss of currently threatened bird species would result in a greater loss of morphological diversity than expected under random extinctions. Our results suggest that ongoing declines of threatened bird species may drive a disproportionately large loss of morphological diversity, with potentially major consequences for ecosystem functioning. Read the free Plain Language Summary for this article on the Journal blog.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call