Abstract

The proposed system uses deep neural networks for identifying bird species. The model will be trained on bird images that are coming in the endangered species category. The application can also handle new data points, unlike existing systems that require model re-training for accommodating new data. The system can identify bird species in a large view of the image. The model will be trained using a convolutional neural network-based architecture called Siamese Network. This network is also called one-shot learning which means that it requires only few training example for each class. Existing models use image processing techniques or vanilla convolutional neural networks for classifying bird images. These models cannot accommodate new images and have to be retrained to do so. There is no commercially available system that can detect a species of bird in high resolution / large image. While in the Siamese network we only have to add new data, there is no need to retraining the neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.