Abstract
We define invariants of oriented surface-links by enhancing the biquandle counting invariant using biquandle modules, algebraic structures defined in terms of biquandle actions on commutative rings analogous to Alexander biquandles. We show that bead colorings of marked graph diagrams are preserved by Yoshikawa moves and hence define enhancements of the biquandle counting invariant for surface links. We provide examples illustrating the computation of the invariant and demonstrate that these invariants are not determined by the first and second Alexander elementary ideals and characteristic polynomials.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have