Abstract

Large linear magnetoresistance (MR) in electron-injected $p$-type silicon at very low magnetic field is observed experimentally at room temperature. The large linear MR is induced in electron-dominated space-charge transport regime, where the magnetic field modulation of electron-to-hole density ratio controls the MR, as indicated by the magnetic field dependence of Hall coefficient in the silicon device. Contrary to the space-charge-induced MR effect in unipolar silicon device, where the large linear MR is inhomogeneity-induced, our results provide a different insight into the mechanism of large linear MR in nonmagnetic semiconductors that is not based on the inhomogeneity model. This approach enables homogeneous semiconductors to exhibit large linear MR at low magnetic fields that until now has only been appearing in semiconductors with strong inhomogeneities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call