Abstract

To minimize the effect of muscle contractions during irreversible electroporation (IRE), this paper attempts to research the ablation effect and muscle contractions by applying high-frequency IRE (H-FIRE) ablation to liver tissue in vivo. An insulated needle electrode was produced by painting an insulating coating on the outer surface of the needle electrode tip. A series of experiments were conducted using insulated needle electrodes and traditional needle electrodes to apply H-FIRE pulses and traditional monopolar IRE pulses to rabbit liver tissues. The finite element model of the rabbit liver tissue was established to determine the lethal thresholds of H-FIRE in liver tissues. Muscle contractions were measured by an accelerometer. With increased constitutive pulse width and pulse voltage, the ablation area and muscle contraction strength are also increased, which can be used to optimize the ablation parameters of H-FIRE. Under the same pulse parameters, the ablation areas are similar for the two types of electrodes, and the ablation region has a clear boundary. H-FIRE and insulated needle electrodes can mitigate the extent of muscle contractions. The lethal thresholds of H-FIRE in rabbit liver tissues were determined. This paper describes the relationships between the ablation area, muscle contractions, and pulse parameters; the designed insulated needle electrodes can be used in IRE for reducing muscle contraction. The study provides guidance for treatment planning and reducing muscle contractions in the clinical application of H-FIRE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call