Abstract

The integration of two-dimensional heterostructure materials remains a fundamental way for the manipulation of spintronics in practical applications. Here, we predicted the transform of stripy antiferromagnetic (AFM) CoI2 and MnBr2 monolayers to interlayer AFM CoI2/MnBr2 heterostructure with intralayer ferromagnetic orders by using density functional theory. Interestingly, the CoI2/MnBr2 heterostructure exhibits a typical bipolar magnetic semiconducting state with type-I band alignments. Moreover, the half-metal/semiconductor transition and spin-up/spin-down polarization switching in CoI2/MnBr2 heterostructure can be effectively triggered by electron/hole doping. Our study provides the potential of AFM spintronics for information storage and processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call