Abstract

We show that the (2+1)-dimensional massless Dirac equation, which includes a tilt term, can be reduced to the biconfluent Heun equation for a broad range of scalar confining potentials, including the well-known Morse potential. Applying these solutions, we investigate a bipolar electron waveguide in 8–Pmmn borophene, formed by a well and barrier, both described by the Morse potential. We demonstrate that the ability of two-dimensional materials with tilted Dirac cones to localize electrons in both a barrier and a well can be harnessed to create pseudogaps in their electronic spectrum. These pseudogaps can be tuned through varying the applied top-gate voltage. Potential opto-valleytronic and terahertz applications are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.