Abstract

Biphenyl is found both in natural and anthropogenic sources and is used as a fungistat in the packaging of citrus fruits. Acute exposure to high levels of biphenyl has been observed to cause skin irritation and toxic effects on the liver and kidneys. However, the mechanisms of cytotoxicity induced by biphenyl are not yet well understood. In the present study, the cytotoxicity of biphenyl was studied by flow cytometry with fluorescent probes. Biphenyl at 100 μM significantly increased cell lethality after 3 h in rat thymocytes. In addition, biphenyl at 100 μM or more elevated intracellular Zn2+ levels. N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), an intracellular and extracellular Zn2+ chelator, but not diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid (DTPA), a membrane-impermeable Zn2+ chelator, attenuated the biphenyl-induced increase in intracellular Zn2+ levels and cell death. These results suggested that biphenyl-induced cytotoxicity caused an increase in intracellular Zn2+ levels, which was dependent on internal Zn2+. Moreover, biphenyl led to an increase in sensitivity to oxidative stress, while TPEN inhibited this biphenyl-induced increase. Our findings revealed that biphenyl caused an increase in the intracellular free Zn2+ concentration, inducing cytotoxicity, cell death, and an increase in sensitivity to oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call